56027

MBA 2 Year 2nd Semester (N.S.) 2011 Examination-May, 2015

OPERATIONS RESEARCH

Paper: MBA-207

Time: 3 hours

Max. Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard will be entertained after the examination.

Note: Attempt five questions. Q.No. 1 from Section-A is compulsory. From Section-B, attempt four questions (one from each Unit). All questions carry equal marks.

SECTION - A

- 1. Explain and illustrate (if necessary) the following:
 - (a) Symbolic model
 - (b) Unboundedness
 - (c) Degeneracy in transportation model

- (d) Travelling salesman problem
- (e) Network
- (f) Merging activities
- (g) Saddle Point
- (h) SIRO system

SECTION - B

UNIT - I

- 2. Explain the characteristics and process of managerial decision making. How can OR help in it?
- 3. Solve the following LPP:

Maximise $z = 3x_1 + 4x_2 + x_3$

Subject to: $x_1 + 2x_2 + 3x_3 \le 90$

 $2x_1 + x_2 + x_3 \le 60$

 $3x_1 + x_2 + 2x_3 \le 80$

 $x_1, x_2, x_3 \geq 0$

UNIT-II

4. A manufacturer wants to ship 22 loads of his product from three sources to five destinations. The distances in kilometers, from sources to destinations are given in the following matrix:

Destination

Destination									
Source	$\mathbf{D_1}$	D_2	$\mathbf{D_3}$	D ₄	D ₅	Supply			
S ₁	5	8	6	6	3	8			
S ₂	4	7	7	6	5	5			
S ₃	8	4	6	6	4	9			
Demand	4	4	5	4	8				

Obtain an optimal solution to this problem.

5. Time taken (in hours) by five employees in performing five jobs is given in the following matrix:

Employees Jobs \mathbf{B} C D \mathbf{E} A 5 13 15 P 10 16 Q 3 9 18 13 6 2 R 7 10 S 9 7 12 7 11 10 12

Find the optimal allocation of job. Will the optimal allocation change if job R cannot be assigned to employee E? Show.

UNIT-III

6. Compare and contrast CPM and PERT. Which are the steps involved in their application? Mention the areas of their application.

7. Demand pattern for roses (in dozen) at a flower shop is as given below:

Demand	70	80	90	100
No. of days	5	10	20	15

The roses are purchased at Rs. 10 per dozen and sold at Rs. 30 per dozen. All unsold roses are donated to a local hospital. How much dozens of roses should be purchased by the flower shop owner? Also find the value of EUPI.

UNIT - IV

- 8. Explain the fields of applications of queuing theory and the main characteristics of a queuing system.
- **9.** A firm has a single channel service station with the following arrival and service time probability distributions:

Inter arrival time (minutes)	Probability	Service time (minutes)	Probability	
10	0.10	5	0.10	
15	0.25	10	0.17	
20	0.30	15	0.21	
25	0.25	20	0.27	
30	0.10	25	0.25	

Using random number tables, simulate the queuing system for first ten arrivals.